Search results
Results from the WOW.Com Content Network
For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...
It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. [2] CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. [2]
Since C −1 = 0, every 0-chain is a cycle (i.e. Z 0 = C 0); moreover, the group B 0 of the 0-boundaries is generated by the three elements on the right of these equations, creating a two-dimensional subgroup of C 0. So the 0th homology group H 0 (S) = Z 0 /B 0 is isomorphic to Z, with a basis given (for example) by the image of the 0-cycle (v 0).
0, 1, 0, 0. This does work out, predicting the complement's reduced Betti numbers. The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0
Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]
This does not contradict Whitehead theorem since the Long Line does not have the homotopy type of a CW-complex. Another prominent example for this phenomenon is the Warsaw circle . References
A "homology-like" theory satisfying all of the Eilenberg–Steenrod axioms except the dimension axiom is called an extraordinary homology theory (dually, extraordinary cohomology theory). Important examples of these were found in the 1950s, such as topological K-theory and cobordism theory , which are extraordinary co homology theories, and ...
The cellular chain groups () are just freely generated on the -cells in degree , so they are in degree 0, and and zero everywhere else. Cellular (co-)homology is the (co-)homology of this chain complex , and since all boundary homomorphisms must be zero (recall that n > 1 {\displaystyle n>1} ), the cohomology is