Search results
Results from the WOW.Com Content Network
The term agostic is reserved to describe two-electron, three-center bonding interactions between carbon, hydrogen, and a metal. Two-electron three-center bonding is clearly implicated in the complexation of H 2, e.g., in W(CO) 3 (PCy 3) 2 H 2, which is closely related to the agostic complex shown in the figure. [8]
Consequently, hydrogen bonds between or within solute molecules dissolved in water are almost always unfavorable relative to hydrogen bonds between water and the donors and acceptors for hydrogen bonds on those solutes. [44] Hydrogen bonds between water molecules have an average lifetime of 10 −11 seconds, or 10 picoseconds. [45]
Bond strength is less than 1 kcal/mol. In the case of aromatic C–H donors, C–H···O interactions are not linear due to influence of aromatic ring substituents near the interacting C-H group. [ 6 ] [ 7 ] If aromatic molecules involved in С–Н···О interaction belong to the group of polycyclic aromatic hydrocarbons , the strength of C ...
In organic chemistry and organometallic chemistry, carbon–hydrogen bond activation (C−H activation) is a type of organic reaction in which a carbon–hydrogen bond is cleaved and replaced with a C−X bond (X ≠ H is typically a main group element, like carbon, oxygen, or nitrogen).
By some definitions, "organic" compounds are only required to contain carbon. However, most of them also contain hydrogen, and because it is the carbon-hydrogen bond that gives this class of compounds most of its particular chemical characteristics, carbon-hydrogen bonds are required in some definitions of the word "organic" in chemistry. [12]
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
Thioureas are often found to be stronger hydrogen-bond donors (i.e., more acidic) than ureas [7] because their amino groups are more positively charged. Quantum chemical analyses revealed that this counterintuitive phenomenon, which is not explainable by the relative electronegativities of O and S, results from the effective steric size of the ...
Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [2]