Search results
Results from the WOW.Com Content Network
Knowing the analytical concentrations of reactants initially in the reaction vessel and in the burette, all analytical concentrations can be derived as a function of the volume (or mass) of titrant added. The equilibrium constants may be derived by best-fitting of the experimental data with a chemical model of the equilibrium system.
Concerns have also surfaced over the accuracy of the Benesi–Hildebrand method as certain conditions cause these calculations to become invalid. For instance, the reactant concentrations must always obey the assumption that the initial concentration of the guest ([G] 0) is much larger than the initial concentration of the host ([H] 0).
For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium .
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y -axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
For both (a) and (b), i) describes the catalytic cycle with relevant rate constants and concentrations, ii) displays the concentration of product and reactant over the course of the reaction, iii) describes the rate of the reaction as substrate is consumed from right to left, and iv) shows that the catalyst resting state is an equilibrium ...
The extent of reaction is a useful quantity in computations with equilibrium reactions. [citation needed] Consider the reaction 2 A ⇌ B + 3 C. where the initial amounts are = , = , = , and the equilibrium amount of A is 0.5 mol. We can calculate the extent of reaction in equilibrium from its definition
An ICE table or RICE box or RICE chart is a tabular system of keeping track of changing concentrations in an equilibrium reaction. ICE stands for initial, change, equilibrium. It is used in chemistry to keep track of the changes in amount of substance of the reactants and also organize a set of conditions that one wants to solve with. [1]
Equilibrium condition: At equilibrium, the reaction quotient (Q) is equal to the equilibrium constant (K) for the reaction. This condition is represented as Q = K, indicating that the forward and reverse reaction rates are equal. Predicting reaction direction: If Q < K, the reaction will proceed in the forward direction to establish equilibrium ...