Search results
Results from the WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
The design of floating-point format allows various optimisations, resulting from the easy generation of a base-2 logarithm approximation from an integer view of the raw bit pattern. Integer arithmetic and bit-shifting can yield an approximation to reciprocal square root (fast inverse square root), commonly required in computer graphics.
For example, gcc provides a quadruple-precision type called __float128 for x86, x86-64 and Itanium CPUs, [22] and on PowerPC as IEEE 128-bit floating-point using the -mfloat128-hardware or -mfloat128 options; [23] and some versions of Intel's C/C++ compiler for x86 and x86-64 supply a nonstandard quadruple-precision type called _Quad. [24]
Fixed-point representation uses integer hardware operations controlled by a software implementation of a specific convention about the location of the binary or decimal point, for example, 6 bits or digits from the right. The hardware to manipulate these representations is less costly than floating point, and it can be used to perform normal ...
The bfloat16 format, being a shortened IEEE 754 single-precision 32-bit float, allows for fast conversion to and from an IEEE 754 single-precision 32-bit float; in conversion to the bfloat16 format, the exponent bits are preserved while the significand field can be reduced by truncation (thus corresponding to round toward 0) or other rounding ...
For example, the smallest positive number that can be represented in binary64 is 2 −1074; contributions to the −1074 figure include the emin value −1022 and all but one of the 53 significand bits (2 −1022 − (53 − 1) = 2 −1074). Decimal digits is the precision of the format expressed in terms of an equivalent number of decimal digits.