Search results
Results from the WOW.Com Content Network
For a conjugate-linear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the conjugate-linear operator A on a complex Hilbert space H is an conjugate-linear operator A ∗ : H → H with the property:
In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.
The last property given above shows that if one views as a linear transformation from Hilbert space to , then the matrix corresponds to the adjoint operator of . The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.
Even more general is the concept of adjoint operator for operators on (possibly infinite-dimensional) complex Hilbert spaces. All this is subsumed by the *-operations of C*-algebras . One may also define a conjugation for quaternions and split-quaternions : the conjugate of a + b i + c j + d k {\textstyle a+bi+cj+dk} is a − b i − c j − d ...
Specifically, adjoint or adjunction may mean: Adjoint of a linear map, also called its transpose in case of matrices; Hermitian adjoint (adjoint of a linear operator) in functional analysis; Adjoint endomorphism of a Lie algebra; Adjoint representation of a Lie group; Adjoint functors in category theory; Adjunction (field theory)
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [ 1 ] [ 2 ] It is occasionally known as adjunct matrix , [ 3 ] [ 4 ] or "adjoint", [ 5 ] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose .
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
Any observable, i.e., any quantity which can be measured in a physical experiment, should be associated with a self-adjoint linear operator. The operators must yield real eigenvalues, since they are values which may come up as the result of the experiment. Mathematically this means the operators must be Hermitian. [1]