enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pi bond - Wikipedia

    en.wikipedia.org/wiki/Pi_bond

    Two pi bonds are the maximum that can exist between a given pair of atoms. Quadruple bonds are extremely rare and can be formed only between transition metal atoms, and consist of one sigma bond, two pi bonds and one delta bond. A pi bond is weaker than a sigma bond, but the combination of pi and sigma bond is stronger than either bond by ...

  3. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.

  4. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Pi bonds occur when two orbitals overlap when they are parallel. [9] For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds.

  5. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The σ from the 2p is more non-bonding due to mixing, and same with the 2s σ. This also causes a large jump in energy in the 2p σ* orbital. The bond order of diatomic nitrogen is three, and it is a diamagnetic molecule. [12] The bond order for dinitrogen (1σ g 2 1σ u 2 2σ g 2 2σ u 2 1π u 4 3σ g 2) is three because two electrons are now ...

  6. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    Pi bonds are created by the “side-on” interactions of the orbitals. [3] Once again, in molecular orbitals, bonding pi (π) electrons occur when the interaction of the two π atomic orbitals are in-phase. In this case, the electron density of the π orbitals needs to be symmetric along the mirror plane in order to create the bonding ...

  7. Pi backbonding - Wikipedia

    en.wikipedia.org/wiki/Pi_backbonding

    Oxidation of R 3 P–M complexes results in longer M–P bonds and shorter P–C bonds, consistent with π-backbonding. [11] In early work, phosphine ligands were thought to utilize 3d orbitals to form M–P pi-bonding, but it is now accepted that d-orbitals on phosphorus are not involved in bonding as they are too high in energy. [12] [13]

  8. Bond order potential - Wikipedia

    en.wikipedia.org/wiki/Bond_order_potential

    These pi-bond contributions to the sigma bond order are responsible to stabilize the asymmetric before the symmetric (2x1) dimerized reconstruction of the Si(100) surface. [10] Also the ReaxFF potential can be considered a bond order potential, although the motivation of its bond order terms is different from that described here.

  9. Mesomeric effect - Wikipedia

    en.wikipedia.org/wiki/Mesomeric_effect

    In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]