Search results
Results from the WOW.Com Content Network
Generative artificial intelligence (generative AI, GenAI, [166] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 167 ] [ 168 ] [ 169 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 170 ...
Artificial general intelligence (AGI) is a type of artificial intelligence (AI) that matches or surpasses human cognitive capabilities across a wide range of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1]
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]
Explainable AI (XAI), often overlapping with interpretable AI, or explainable machine learning (XML), is a field of research within artificial intelligence (AI) that explores methods that provide humans with the ability of intellectual oversight over AI algorithms.
Automated planning and scheduling, sometimes denoted as simply AI planning, [1] is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles.
The Biden administration said Thursday that employers who use algorithms and artificial intelligence to make hiring decisions risk violating the ADA.
AIMA gives detailed information about the working of algorithms in AI. The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and ...