Search results
Results from the WOW.Com Content Network
acetyl chloride SOCl 2 acetic acid (i) Li[AlH 4], ether (ii) H 3 O + ethanol Two typical organic reactions of acetic acid Acetic acid undergoes the typical chemical reactions of a carboxylic acid. Upon treatment with a standard base, it converts to metal acetate and water. With strong bases (e.g., organolithium reagents), it can be doubly deprotonated to give LiCH 2 COOLi. Reduction of acetic ...
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
The strength of a strong acid is limited ("leveled") by the basicity of the solvent. Similarly the strength of a strong base is leveled by the acidity of the solvent. When a strong acid is dissolved in water, it reacts with it to form hydronium ion (H 3 O +). [2] An example of this would be the following reaction, where "HA" is the strong acid:
Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.
For example, the pK a value of acetic acid is 4.8, while ethanol has a pK a of 16. Hence acetic acid is a much stronger acid than ethanol. This in turn means that for equimolar solutions of a carboxylic acid or an alcohol in water, the carboxylic acid would have a much lower pH. [1]: 263–7
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.
A strong chemical bond is formed from the transfer or sharing of electrons between atomic centers and relies on the electrostatic attraction between the protons in nuclei and the electrons in the orbitals. The types of strong bond differ due to the difference in electronegativity of the constituent elements.
An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids , whose acidity is associated with their carboxyl group –COOH. Sulfonic acids , containing the group –SO 2 OH, are relatively stronger acids.