Search results
Results from the WOW.Com Content Network
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
At any junction, the total flow into a junction equals the total flow out of that junction (law of conservation of mass, or continuity law, or Kirchhoff's first law) Between any two junctions, the head loss is independent of the path taken (law of conservation of energy, or Kirchhoff's second law).
Kirchhoff's current law – Kirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem; History. The use of duality in circuit theory is due to ...
This yields Kirchhoff's law: α λ = ε λ {\displaystyle \alpha _{\lambda }=\varepsilon _{\lambda }} By a similar, but more complicated argument, it can be shown that, since black-body radiation is equal in every direction (isotropic), the emissivity and the absorptivity, if they happen to be dependent on direction, must again be equal for any ...
Kirchhoff's circuit laws; Kirchhoff's law of thermal radiation; Kirchhoff's theorem; Kirchhoff's diffraction formula; S. Spectroscopy This page was last edited on 16 ...
Mesh analysis and loop analysis both make systematic use of Kirchhoff’s voltage law to arrive at a set of equations guaranteed to be solvable if the circuit has a solution. [1] Mesh analysis is usually easier to use when the circuit is planar, compared to loop analysis. [2]