Search results
Results from the WOW.Com Content Network
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
For as a subset of a Euclidean space, is a point of closure of if every open ball centered at contains a point of (this point can be itself).. This definition generalizes to any subset of a metric space. Fully expressed, for as a metric space with metric , is a point of closure of if for every > there exists some such that the distance (,) < (= is allowed).
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counterintuitive, as the common meanings of open and closed are antonyms, but their mathematical definitions are not mutually exclusive .
A set might be open, closed, both, or neither. In particular, open and closed sets are not mutually exclusive, meaning that it is in general possible for a subset of a topological space to simultaneously be both an open subset and a closed subset. Such subsets are known as clopen sets.
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.
The topological dimension of a discrete space is equal to 0. A topological space is discrete if and only if its singletons are open, which is the case if and only if it does not contain any accumulation points. The singletons form a basis for the discrete topology.