Search results
Results from the WOW.Com Content Network
This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is
When examining a function in a neighborhood of a point, one can discard many complicated global aspects of the function and accurately approximate it with simpler functions. The quadratic approximation is the best-fitting quadratic in the neighborhood of a point, and is frequently used in engineering and science. To calculate the quadratic ...
Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations:
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
In such cases, the step calculation itself will typically need to be done with an approximate iterative method appropriate for large and sparse problems, such as the conjugate gradient method. In order to make this kind of approach work, one needs at least an efficient method for computing the product J r T J r p {\displaystyle {\mathbf {J ...
A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions. It was designed in the 1820s, and was first created by Charles Babbage. The name difference engine is derived from the method of finite differences, a way to interpolate or tabulate functions by using a small set of polynomial co-efficients.
For example, a ρ-approximation algorithm A is defined to be an algorithm for which it has been proven that the value/cost, f(x), of the approximate solution A(x) to an instance x will not be more (or less, depending on the situation) than a factor ρ times the value, OPT, of an optimum solution.
In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.