enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    The three apex points always define a plane in three dimensions, and all three centers of similarity must lie in the plane containing the circular bases. Hence, the three centers must lie on the intersection of the two planes, which must be a line in three dimensions. [2] Monge's theorem can also be proved by using Desargues' theorem.

  3. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    Thus, for 3-dimensional spaces, one needs to show that (1*) every point lies in 3 distinct planes, (2*) every two planes intersect in a unique line and a dual version of (3*) to the effect: if the intersection of plane P and Q is coplanar with the intersection of plane R and S, then so are the respective intersections of planes P and R, Q and S ...

  5. Vanishing point - Wikipedia

    en.wikipedia.org/wiki/Vanishing_point

    2. Let A, B, and C be three mutually orthogonal straight lines in space and v A ≡ (x A, y A, f), v B ≡ (x B, y B, f), v C ≡ (x C, y C, f) be the three corresponding vanishing points respectively. If we know the coordinates of one of these points, say v A, and the direction of a straight line on the image plane, which passes through a ...

  6. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The simplest case in Euclidean geometry is the lineline intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include: Lineplane intersection; Line–sphere intersection; Intersection of a polyhedron with a line

  7. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    However, a set of four or more distinct points will, in general, not lie in a single plane. An example of coplanar points. Two lines in three-dimensional space are coplanar if there is a plane that includes them both. This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines.

  8. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m, a common perpendicular would have slope −1/m and we can take the line with equation y = −x/m as a common perpendicular ...

  9. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Lineplane_intersection

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...