Search results
Results from the WOW.Com Content Network
Photo 51 is an X-ray based fiber diffraction image of a paracrystalline gel composed of DNA fiber [1] taken by Raymond Gosling, [2] [3] a postgraduate student working under the supervision of Maurice Wilkins and Rosalind Franklin at King's College London, while working in Sir John Randall's group.
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
Maurice Hugh Frederick Wilkins CBE FRS (15 December 1916 – 5 October 2004) [2] was a New Zealand-born British biophysicist and Nobel laureate whose research spanned multiple areas of physics and biophysics, contributing to the scientific understanding of phosphorescence, isotope separation, optical microscopy, and X-ray diffraction.
I took my AncestryDNA test in 2019, and in the five years since, the site has continued to deepen. Every year or so, the site adds even more regions to its database, meaning your results are often ...
X-ray diffraction image of the double helix structure of the DNA molecule, taken 1952 by Raymond Gosling, commonly referred to as "Photo 51", during his work with Rosalind Franklin on the structure of DNA Source King's College London Archives: KDBP1/1/867.
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.
X-ray diffraction computed tomography is an experimental technique that combines X-ray diffraction with the computed tomography data acquisition approach. X-ray diffraction (XRD) computed tomography (CT) was first introduced in 1987 by Harding et al. [ 1 ] using a laboratory diffractometer and a monochromatic X-ray pencil beam .
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.