enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor diagram - Wikipedia

    en.wikipedia.org/wiki/Taylor_diagram

    One of the main limitation of the Taylor diagram is the absence of explicit information about model biases. One approach suggested by Taylor (2001) was to add lines, whose length is equal to the bias to each data point. An alternative approach, originally described by Elvidge et al., 2014 [17], is to show the bias of the models via a color ...

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  5. Volterra series - Wikipedia

    en.wikipedia.org/wiki/Volterra_series

    The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.

  6. Bernoulli number - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_number

    In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...

  7. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose is an Itô drift-diffusion process that satisfies the stochastic differential equation

  8. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  9. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of ⁠ 1 {\displaystyle 1} ⁠ is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :