Search results
Results from the WOW.Com Content Network
With hexagonal and rhombohedral lattice systems, it is possible to use the Bravais–Miller system, which uses four indices (h k i ℓ) that obey the constraint h + k + i = 0. Here h , k and ℓ are identical to the corresponding Miller indices, and i is a redundant index.
In crystallography, the hexagonal crystal family is one of the six crystal families, which includes two crystal systems (hexagonal and trigonal) and two lattice systems (hexagonal and rhombohedral). While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent (see section crystal systems below). [ 1 ]
This arrangement of atoms in a crystal structure is known as hexagonal close packing (hcp). If, however, all three planes are staggered relative to each other and it is not until the fourth layer is positioned directly over plane A that the sequence is repeated, then the following sequence arises:
A crystal family is determined by lattices and point groups. It is formed by combining crystal systems that have space groups assigned to a common lattice system. In three dimensions, the hexagonal and trigonal crystal systems are combined into one hexagonal crystal family. Hexagonal hanksite crystal, with threefold c-axis symmetry
The more commonly used hexagonal setting has 3 translationally equivalent points per unit cell. The Pearson symbol refers to the hexagonal setting in its letter code (hR), but the following figure gives the number of translationally equivalent points in the primitive rhombohedral setting.
It can be used to define the rhombohedral lattice system, a honeycomb with rhombohedral cells. A rhombohedron has two opposite apices at which all face angles are equal; a prolate rhombohedron has this common angle acute, and an oblate rhombohedron has an obtuse angle at these vertices.
The hexagonal crystal family is split into two subsets, called the rhombohedral and hexagonal lattice systems. Crystal families (6 in three dimensions) The point group of a space group does not quite determine its lattice system, because occasionally two space groups with the same point group may be in different lattice systems.
Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."