Search results
Results from the WOW.Com Content Network
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...
Proof of law of cosines using Ptolemy's theorem. Referring to the diagram, triangle ABC with sides AB = c, BC = a and AC = b is drawn inside its circumcircle as shown. Triangle ABD is constructed congruent to triangle ABC with AD = BC and BD = AC. Perpendiculars from D and C meet base AB at E and F respectively. Then:
Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof [ 1 ] : 411 of Feuerbach's theorem uses the converse theorem.
English: Animated visual proof of Ptolemy's theorem, based on W. Derrick, J. Herstein (2012) Proof Without Words: Ptolemy's Theorem, The College Mathematics Journal, v 43, n 5, p 386 Date 22 May 2022
Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that + where there is equality if and only if the quadrilateral is cyclic. [24]: p.128–129 This is often called Ptolemy's inequality.
Proclus (410–485) wrote a commentary on The Elements where he comments on attempted proofs to deduce the fifth postulate from the other four; in particular, he notes that Ptolemy had produced a false 'proof'. Proclus then goes on to give a false proof of his own. However, he did give a postulate which is equivalent to the fifth postulate.
According to Ptolemy's theorem, The product of the diagonals is equal to the sum of the products of the opposite sides. In this case, c*c = a*a + b*b (By Ptolemy's theorem) Thus a 2 + b 2 = c 2. Hence proved. Midhul 14:58, 10 August 2009 (UTC) Yes, the Pythagorean theorem follows from Ptolemy's theorem, because the latter is a generalization of ...