Search results
Results from the WOW.Com Content Network
A branch of the logarithm is a continuous function L(z) giving a logarithm of z for all z in a connected open set in the complex plane. In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a ...
Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at =, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis ( 1 , ∞ ) {\displaystyle (1,\infty )} .
Any number log z defined by such criteria has the property that e log z = z. In this manner log function is a multi-valued function (often referred to as a "multifunction" in the context of complex analysis). A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π.
A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.
When the focus is on a single branch, sometimes a branch cut is used; in this case removing the non-positive real numbers from the domain of the function and eliminating as a possible value for Arg z. With this branch cut, the single-branch function is continuous and analytic everywhere in its domain.
The branch point for the principal branch is at z = − 1 / e , with a branch cut that extends to −∞ along the negative real axis. This branch cut separates the principal branch from the two branches W −1 and W 1. In all branches W k with k ≠ 0, there is a branch point at z = 0 and a branch cut along the entire negative real axis.
ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
The cut forces us onto the second sheet, so that when z has traced out one full turn around the branch point z = 1, w has taken just one-half of a full turn, the sign of w has been reversed (because e iπ = −1), and our path has taken us to the point z = 2 on the second sheet of the surface.