Search results
Results from the WOW.Com Content Network
Hemoglobin's binding affinity for CO is 250 times greater than its affinity for oxygen, [69] [70] Since carbon monoxide is a colorless, odorless and tasteless gas, and poses a potentially fatal threat, carbon monoxide detectors have become commercially available to warn of dangerous levels in residences. When hemoglobin combines with CO, it ...
Leghemoglobin (also leghaemoglobin or legoglobin) is an oxygen-carrying phytoglobin found in the nitrogen-fixing root nodules of leguminous plants. It is produced by these plants in response to the roots being colonized by nitrogen-fixing bacteria, termed rhizobia, as part of the symbiotic interaction between plant and bacterium: roots not colonized by Rhizobium do not synthesise leghemoglobin.
Phytogbs0, 1, 2 and 3 are synthesized at very low concentrations in diverse (embryonic and vegetative) plant organs. [19] [20] [21] However, concentrations of Phytogbs increase in plants subjected to specific stress conditions, such as flooding [22] and light-limitation. [23] Hence, some Phytogbs have been considered as plant stress-responsive ...
Hemoglobin binds oxygen cooperatively due to steric conformation changes in the protein complex, which increases hemoglobin's affinity for oxygen when partially oxygenated. In some hemocyanins of horseshoe crabs and some other species of arthropods , cooperative binding is observed, with Hill coefficients of 1.6–3.0.
In plants, resins, fats, waxes, and complex organic chemicals are exuded from plants, e.g., the latex from rubber trees and milkweeds. Solid waste products may be manufactured as organic pigments derived from breakdown of pigments like hemoglobin, and inorganic salts like carbonates, bicarbonates, and phosphate, whether in ionic or in molecular ...
Heme l is one important characteristic of animal peroxidases; plant peroxidases incorporate heme B. Lactoperoxidase and eosinophil peroxidase are protective enzymes responsible for the destruction of invading bacteria and virus. Thyroid peroxidase is the enzyme catalyzing the biosynthesis of the important thyroid hormones.
These low levels of iron limit the primary production of phytoplankton and have led to the Iron Hypothesis [39] where it was proposed that an influx of iron would promote phytoplankton growth and thereby reduce atmospheric CO 2. This hypothesis has been tested on more than 10 different occasions and in all cases, massive blooms resulted.
Many different plant species live in the high-altitude environment. These include perennial grasses, sedges, forbs, cushion plants, mosses, and lichens. [81] High-altitude plants must adapt to the harsh conditions of their environment, which include low temperatures, dryness, ultraviolet radiation, and a short growing season.