enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The Bateman equation predicts the relative quantities of all the isotopes that compose a given decay chain once that decay chain has proceeded long enough for some of its daughter products to have reached the stable (i.e., nonradioactive) end of the chain. A decay chain that has reached this state, which may require billions of years, is said ...

  3. Radon-222 - Wikipedia

    en.wikipedia.org/wiki/Radon-222

    Radon-222 (222 Rn, Rn-222, historically radium emanation or radon) is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226.

  4. Radon - Wikipedia

    en.wikipedia.org/wiki/Radon

    Radon emanation from the soil varies with soil type and with surface uranium content, so outdoor radon concentrations can be used to track air masses to a limited degree. [114] [a] Because of radon's rapid loss to air and comparatively rapid decay, radon is used in hydrologic research that studies the interaction between groundwater and streams ...

  5. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  6. Radium-226 - Wikipedia

    en.wikipedia.org/wiki/Radium-226

    The decay-chain of uranium-238, which contains radium-226 as an intermediate decay product. 226 Ra occurs in the decay chain of uranium-238 (238 U), which is the most common naturally occurring isotope of uranium. It undergoes alpha decay to radon-222, which is also radioactive; the decay chain ultimately terminates at lead-206.

  7. Decay scheme - Wikipedia

    en.wikipedia.org/wiki/Decay_scheme

    The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.

  8. Polonium-210 - Wikipedia

    en.wikipedia.org/wiki/Polonium-210

    The decay chain of uranium-238, known as the uranium series or radium series, of which polonium-210 is a member Schematic of the final steps of the s-process.The red path represents the sequence of neutron captures; blue and cyan arrows represent beta decay, and the green arrow represents the alpha decay of 210 Po.

  9. Radon compounds - Wikipedia

    en.wikipedia.org/wiki/Radon_compounds

    Radon is a noble gas, i.e. a zero-valence element, and is chemically not very reactive. The 3.8-day half-life of radon-222 makes it useful in physical sciences as a natural tracer. Because radon is a gas under normal circumstances, and its decay-chain parents are not, it can readily be extracted from them for research. [1]