enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...

  4. Volume units used in petroleum engineering - Wikipedia

    en.wikipedia.org/wiki/Volume_units_used_in...

    Gas undergoes a slight expansion when the temperature is raised from 15 °C (59 °F) to 60 °F and this expansion is built into the above factor for gas. The standard temperature and pressure (STP) for gas varies depending on the particular code being used. [2] It is just as important to know the standard pressure as the temperature.

  5. Volume correction factor - Wikipedia

    en.wikipedia.org/wiki/Volume_Correction_Factor

    In thermodynamics, the Volume Correction Factor (VCF), also known as Correction for the effect of Temperature on Liquid (CTL), is a standardized computed factor used to correct for the thermal expansion of fluids, primarily, liquid hydrocarbons at various temperatures and densities. [1]

  6. Engine efficiency - Wikipedia

    en.wikipedia.org/wiki/Engine_efficiency

    The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any heat engine the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase.

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  8. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    We assume the expansion occurs without exchange of heat (adiabatic expansion). Doing this work , air inside the cylinder will cool to below the target temperature. To return to the target temperature (still with a free piston), the air must be heated, but is no longer under constant volume, since the piston is free to move as the gas is reheated.

  9. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    Under the assumption of ideal gas law, heat and work flows go in the same direction (K < 0), such as in an internal combustion engine during the power stroke, where heat is lost from the hot combustion products, through the cylinder walls, to the cooler surroundings, at the same time as those hot combustion products push on the piston.