Ad
related to: ultrasonic waves examples in nature and environment for kids lesson 6generationgenius.com has been visited by 10K+ users in the past month
- K-8 Science Lessons
Used in over 30,000 schools.
Loved by teachers and students.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Grades 3-5 Science Videos
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- K-8 Science Lessons
Search results
Results from the WOW.Com Content Network
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
Sound waves propagating through a liquid at ultrasonic frequencies have wavelengths many times longer than the molecular dimensions or the bond length between atoms in the molecule. Therefore, the sound wave cannot directly affect the vibrational energy of the bond, and can therefore not directly increase the internal energy of a molecule.
Myosins and other mechanochemical enzymes which use chemical energy in the form of ATP to produce mechanical vibrations in cells may also contribute to sound wave generation in plant cells. These mechanisms may lead to overall nanomechanical oscillations of cytoskeletal components, which can generate both low and high frequency vibrations. [6]
When ultrasonic waves are generated in a liquid in a rectangular vessel, the wave can be reflected from the walls of the vessel. These reflected waves are called echoes. The direct and reflected waves are superimposed, forming a standing wave. The density of the liquid at a node is more than the density at an antinode.
Laser-ultrasonics uses lasers to generate and detect ultrasonic waves. [1] It is a non-contact technique used to measure materials thickness, detect flaws and carry out materials characterization. The basic components of a laser-ultrasonic system are a generation laser, a detection laser and a detector.
Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect.Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband (i.e. MHz) ultrasonic emission.
Sound from ultrasound is the name given here to the generation of audible sound from modulated ultrasound without using an active receiver. This happens when the modulated ultrasound passes through a nonlinear medium which acts, intentionally or unintentionally, as a demodulator.
Ad
related to: ultrasonic waves examples in nature and environment for kids lesson 6generationgenius.com has been visited by 10K+ users in the past month