enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid.

  3. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  4. Symmedian - Wikipedia

    en.wikipedia.org/wiki/Symmedian

    In geometry, symmedians are three particular lines associated with every triangle.They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the corresponding angle bisector (the line through the same vertex that divides the angle there in half).

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...

  6. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  7. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .

  8. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  9. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    The similarity is a function such that its value is greater when two points are closer (contrary to the distance, which is a measure of dissimilarity: the closer the points, the lesser the distance). The definition of the similarity can vary among authors, depending on which properties are desired. The basic common properties are Positive defined: