enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  4. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Much of the model-based clustering software is in the form of a publicly and freely available R package. Many of these are listed in the CRAN Task View on Cluster Analysis and Finite Mixture Models. [34] The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37]

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    The key drawback of DBSCAN and OPTICS is that they expect some kind of density drop to detect cluster borders. On data sets with, for example, overlapping Gaussian distributions – a common use case in artificial data – the cluster borders produced by these algorithms will often look arbitrary, because the cluster density decreases continuously.

  6. List of cluster management software - Wikipedia

    en.wikipedia.org/wiki/List_of_cluster_management...

    ClusterVisor, [2] from Advanced Clustering Technologies [3] CycleCloud, from Cycle Computing acquired By Microsoft; Komodor, Enterprise Kubernetes Management Platform; Dell/EMC - Remote Cluster Manager (RCM) DxEnterprise, [4] from DH2i [5] Evidian SafeKit; HPE Performance Cluster Manager - HPCM, from Hewlett Packard Enterprise Company; IBM ...

  7. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  8. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.

  9. Data collection system - Wikipedia

    en.wikipedia.org/wiki/Data_collection_system

    Data collection systems are an end-product of software development. Identifying and categorizing software or a software sub-system as having aspects of, or as actually being a "Data collection system" is very important. This categorization allows encyclopedic knowledge to be gathered and applied in the design and implementation of future systems.