Search results
Results from the WOW.Com Content Network
God's algorithm is a notion originating in discussions of ways to solve the Rubik's Cube puzzle, [1] but which can also be applied to other combinatorial puzzles and mathematical games. [2] It refers to any algorithm which produces a solution having the fewest possible moves (i.e., the solver should not require any more than this number).
[1] The maximal number of face turns needed to solve any instance of the Rubik's Cube is 20, [2] and the maximal number of quarter turns is 26. [3] These numbers are also the diameters of the corresponding Cayley graphs of the Rubik's Cube group. In STM (slice turn metric), the minimal number of turns is unknown.
The big advantage of numbers is that they reduce the complexity of solving the last cube face when markings are in use (e.g. if the set-of-four sequence is 1-3-4-2 (even parity, needs two swaps to become the required 1-2-3-4) then the algorithm requirement is clear.
The book was published June 1981. [2] It became the best-selling book of 1981, selling 6,680,000 copies that year. [1] It was the fastest-selling title in the 36-year history of Bantam Books. [1] In November 1981 Nourse published a sequel, The Simple Solutions to Cubic Puzzles, as an aid to the numerous puzzles that were spawned by the Cube ...
In the formulae for piece configuration, the configuration of the fused pieces is given in brackets. Thus, (as a simple regular cuboid example) a 2(2,2)x2(2,2)x2(2,2) is a 2×2×2 puzzle, but it was made by fusing a 4×4×4 puzzle. Puzzles which are constructed in this way are often called "bandaged" cubes.
2-cube 3×3 virtual puzzle Geometric shape: square. A 2-D Rubik type puzzle can no more be physically constructed than a 4-D one can. [8] A 3-D puzzle could be constructed with no stickers on the third dimension which would then behave as a 2-D puzzle but the true implementation of the puzzle remains in the virtual world.
Puzzles have been built resembling Rubik's Cube, or based on its inner workings. For example, a cuboid is a puzzle based on Rubik's Cube, but with different functional dimensions, such as 2×2×4, 2×3×4, and 3×3×5. [116] Other Rubik's Cube modifications include "shape mods", cubes that have been extended or truncated to form a new shape.
Cube mid-solve on the OLL step. The CFOP method (Cross – F2L (first 2 layers) – OLL (orientate last layer) – PLL (permutate last layer)), also known as the Fridrich method, is one of the most commonly used methods in speedsolving a 3×3×3 Rubik's Cube. It is one of the fastest methods with the other most notable ones being Roux and ZZ.