Search results
Results from the WOW.Com Content Network
Memory bandwidth is the rate at which data can be read from or stored into a semiconductor memory by a processor.Memory bandwidth is usually expressed in units of bytes/second, though this can vary for systems with natural data sizes that are not a multiple of the commonly used 8-bit bytes.
High Bandwidth Memory (HBM) is a computer memory interface for 3D-stacked synchronous dynamic random-access memory (SDRAM) initially from Samsung, AMD and SK Hynix.It is used in conjunction with high-performance graphics accelerators, network devices, high-performance datacenter AI ASICs, as on-package cache in CPUs [1] and on-package RAM in upcoming CPUs, and FPGAs and in some supercomputers ...
Some other computer architectures use different modules with a different bus width. In a single-channel configuration, only one module at a time can transfer information to the CPU. In multi-channel configurations, multiple modules can transfer information to the CPU at the same time, in parallel.
The reduced bus width is compensated by a doubled minimum burst length of 16, which preserves the minimum access size of 64 bytes, which matches the cache line size used by modern x86 microprocessors. [17] DDR5 also decreased the refresh rate to 32 ms from 64 ms when operating above 85°C. It also provides two refresh commands: REFab and REFsb.
An address bus is a bus that is used to specify a physical address. When a processor or DMA-enabled device needs to read or write to a memory location, it specifies that memory location on the address bus (the value to be read or written is sent on the data bus). The width of the address bus determines the amount of memory a system can address.
The GPU having quick access to a high amount of L2 cache benefits complex operations like ray tracing compared to the GPU seeking data from the GDDR video memory which is slower. Relying less on accessing memory for storing important and frequently accessed data means that a narrower memory bus width can be used in tandem with a large L2 cache.
The PCI-X standard was developed jointly by IBM, HP, and Compaq and submitted for approval in 1998. It was an effort to codify proprietary server extensions to the PCI local bus to address several shortcomings in PCI, and increase performance of high bandwidth devices, such as Gigabit Ethernet, Fibre Channel, and Ultra3 SCSI cards, and allow processors to be interconnected in clusters.
One of the major improvements the PCI Local Bus had over other I/O architectures was its configuration mechanism. In addition to the normal memory-mapped and I/O port spaces, each device function on the bus has a configuration space, which is 256 bytes long, addressable by knowing the eight-bit PCI bus, five-bit device, and three-bit function numbers for the device (commonly referred to as the ...