enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A regularization term (or regularizer) () is added to a loss function: = ((),) + where is an underlying loss function that describes the cost of predicting () when the label is , such as the square loss or hinge loss; and is a parameter which controls the importance of the regularization term.

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This regularization function, while attractive for the sparsity that it guarantees, is very difficult to solve because doing so requires optimization of a function that is not even weakly convex. Lasso regression is the minimal possible relaxation of penalization that yields a weakly convex optimization problem.

  4. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. [ a ] It is particularly useful to mitigate the problem of multicollinearity in linear regression , which commonly occurs in models with large numbers of parameters. [ 3 ]

  5. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Spectral Regularization is also used to enforce a reduced rank coefficient matrix in multivariate regression. [4] In this setting, a reduced rank coefficient matrix can be found by keeping just the top n {\displaystyle n} singular values, but this can be extended to keep any reduced set of singular values and vectors.

  6. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L 1 and L 2 penalties of the lasso and ridge methods. Nevertheless, elastic net regularization is typically more accurate than both methods with regard to reconstruction. [1]

  7. Vowpal Wabbit - Wikipedia

    en.wikipedia.org/wiki/Vowpal_Wabbit

    Regularization (L1 norm, L2 norm, & elastic net regularization) Flexible input - input features may be: Binary; Numerical; Categorical (via flexible feature-naming and the hash trick) Can deal with missing values/sparse-features; Other features On the fly generation of feature interactions (quadratic and cubic)

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  9. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize ...