Search results
Results from the WOW.Com Content Network
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.
C#: System.Numerics.BigInteger, from .NET 5; ColdFusion: the built-in PrecisionEvaluate() function evaluates one or more string expressions, dynamically, from left to right, using BigDecimal precision arithmetic to calculate the values of arbitrary precision arithmetic expressions. D: standard library module std.bigint
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
Many modern CPUs provide limited support for decimal integers as an extended datatype, providing instructions for converting such values to and from binary values. Depending on the architecture, decimal integers may have fixed sizes (e.g., 7 decimal digits plus a sign fit into a 32-bit word), or may be variable-length (up to some maximum digit ...
In 1920, Edward Kasner's nine-year-old nephew, Milton Sirotta, coined the term googol, which is 10 100, and then proposed the further term googolplex to be "one, followed by writing zeroes until you get tired". [1]
Some chips implement long multiplication, in hardware or in microcode, for various integer and floating-point word sizes. In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Length-prefixed "short" Strings (up to 64 bytes), marker-terminated "long" Strings and (optional) back-references Arbitrary-length heterogenous arrays with end-marker Arbitrary-length key/value pairs with end-marker Structured Data eXchange Formats (SDXF) Big-endian signed 24-bit or 32-bit integer Big-endian IEEE double