Search results
Results from the WOW.Com Content Network
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
The name Log5 is due to Bill James [1] but the method of using odds ratios in this way dates back much farther. This is in effect a logistic rating model and is therefore equivalent to the Bradley–Terry model used for paired comparisons, the Elo rating system used in chess and the Rasch model used in the analysis of categorical data. [2]
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis.
The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".
Figure 1. Demonstrating log* 4 = 2 for the base-e iterated logarithm. The value of the iterated logarithm can be found by "zig-zagging" on the curve y = log b (x ...
Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions
Since 3 16 ≡ 1 (mod 17)—as follows from Fermat's little theorem—it also follows that if n is an integer then 3 4+16n ≡ 3 4 × (3 16) n ≡ 13 × 1 n ≡ 13 (mod 17). Hence the equation has infinitely many solutions of the form 4 + 16n. Moreover, because 16 is the smallest positive integer m satisfying 3 m ≡ 1