Search results
Results from the WOW.Com Content Network
An arm design that does not follow these design rules typically requires an iterative algorithm to solve the inverse kinematics problem. The 321 design is an example of a 6R wrist-partitioned manipulator: the three wrist joints intersect, the two shoulder and elbow joints are parallel, the first joint intersects the first shoulder joint ...
Myorobotics is a toolkit comprising muscles, tendons, joints, and bones to build diverse tendon-driven musculoskeletal robots, e.g. anthropomimetic arms [3] with complex shoulder joints, quadrupeds, [4] and hopping robots. [5]
The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans.
Science & Tech. Shopping. Sports
The kinematics equations for the series chain of a robot are obtained using a rigid transformation [Z] to characterize the relative movement allowed at each joint and separate rigid transformation [X] to define the dimensions of each link. The result is a sequence of rigid transformations alternating joint and link transformations from the base ...
A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion (such as in an articulated robot ) or translational (linear ...
The robot Jacobian results in a set of linear equations that relate the joint rates to the six-vector formed from the angular and linear velocity of the end-effector, known as a twist. Specifying the joint rates yields the end-effector twist directly. The inverse velocity problem seeks the joint rates that provide a specified end-effector twist.
The JPL mobile robot ATHLETE is a platform with six serial chain legs ending in wheels. The arms, fingers, and head of the JSC Robonaut are modeled as kinematic chains. The movement of the Boulton & Watt steam engine is studied as a system of rigid bodies connected by joints forming a kinematic chain.