Search results
Results from the WOW.Com Content Network
The Euler equations were among the first partial differential equations to be written down, after the wave equation. In Euler's original work, the system of equations consisted of the momentum and continuity equations, and thus was underdetermined except in the case of an incompressible flow.
Other equations in physics, such as Gauss's law of the electric field and Gauss's law for gravity, have a similar mathematical form to the continuity equation, but are not usually referred to by the term "continuity equation", because j in those cases does not represent the flow of a real physical quantity.
Eliminating viscosity allows the Navier–Stokes equations to be simplified into the Euler equations. The integration of the Euler equations along a streamline in an inviscid flow yields Bernoulli's equation. When, in addition to being inviscid, the flow is irrotational everywhere, Bernoulli's equation can completely describe the flow everywhere.
The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.
The equations of motion are contained in the continuity equation of the stress–energy tensor: =, where is the covariant derivative. [5] For a perfect fluid, = (+) +. Here is the total mass-energy density (including both rest mass and internal energy density) of the fluid, is the fluid pressure, is the four-velocity of the fluid, and is the metric tensor. [2]
In 1757 he published an important set of equations for inviscid flow in fluid dynamics, that are now known as the Euler equations. [106] Euler is well known in structural engineering for his formula giving Euler's critical load, the critical buckling load of an ideal strut, which depends only on its length and flexural stiffness. [107]
Euler's first axiom or law (law of balance of linear momentum or balance of forces) states that in an inertial frame the time rate of change of linear momentum p of an arbitrary portion of a continuous body is equal to the total applied force F acting on that portion, and it is expressed as
Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...