Search results
Results from the WOW.Com Content Network
In a broadband spectrometer, the visible pump beam is once again held at a fixed frequency, while the probe beam is spectrally broad. These laser beams overlap at a surface, but may access a wider range of molecular resonances simultaneously than a scanning spectrometer, and hence spectra can be acquired significantly faster, allowing the ...
When the electron dynamics in the bound states just above the Fermi level need to be studied, two-photon excitation in pump-probe setups is used. There, the first photon of low-enough energy is used to excite electrons into unoccupied bands that are still below the energy necessary for photoemission (i.e. between the Fermi and vacuum levels).
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
In this experiment, first a set of pump pulses is applied to the sample. This is followed by a waiting time during which the system is allowed to relax. The typical waiting time lasts from zero to several picoseconds, and the duration can be controlled with a resolution of tens of femtoseconds.
It is a branch of atomic spectra where, Absorption lines are typically classified by the nature of the quantum mechanical change induced in the molecule or atom. Rotational lines, for instance, occur when the rotational state of a molecule is changed. Rotational lines are typically found in the microwave spectral region.
Spectroscopy is a branch of science concerned with the spectra of electromagnetic radiation as a function of its wavelength or frequency measured by spectrographic equipment, and other techniques, in order to obtain information concerning the structure and properties of matter. [4]
In the mid- to far-IR, spectra are typically expressed in units of Watts per unit wavelength (μm) or wavenumber (cm −1). In many cases, the spectrum is displayed with the units left implied (such as "digital counts" per spectral channel). A comparison of the four abscissa types typically used for visible spectrometers.
Schematic diagram of a typical laser, showing the three major parts. A laser is constructed from three principal parts: An energy source (usually referred to as the pump or pump source), A gain medium or laser medium, and; Two or more mirrors that form an optical resonator.