Search results
Results from the WOW.Com Content Network
A spread of Krypto cards: players must find a way to calculate 12 using the numbers 5, 19, 8, 3 and 6. Krypto is a card game designed by Daniel Yovich in 1963 and published by Parker Brothers and MPH Games Co. [1] It is a mathematical game that promotes proficiency with basic arithmetic operations.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively.
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
Salem–Spencer sets are also called 3-AP-free sequences or progression-free sets. They have also been called non-averaging sets, [ 1 ] [ 2 ] but this term has also been used to denote a set of integers none of which can be obtained as the average of any subset of the other numbers. [ 3 ]
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
An equivalent formulation of this solution, given by Bernard Frénicle de Bessy, is that for the three squares in arithmetic progression , , and , the middle number is the hypotenuse of a Pythagorean triangle and the other two numbers and are the difference and sum respectively of the triangle's two legs. [6]
To solve the puzzle in a single move, turn up the two cups that are upside down — after which all three cups are facing up. As a magic trick , a magician can perform the solvable version in a convoluted way, and then ask an audience member to solve the unsolvable version.