Search results
Results from the WOW.Com Content Network
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.
The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.
Octave programs consist of a list of function calls or a script. The syntax is matrix-based and provides various functions for matrix operations. It supports various data structures and allows object-oriented programming. [26] Its syntax is very similar to MATLAB, and careful programming of a script will allow it to run on both Octave and ...
In statistical graphics, the functional boxplot is an informative exploratory tool that has been proposed for visualizing functional data. [1] [2] Analogous to the classical boxplot, the descriptive statistics of a functional boxplot are: the envelope of the 50% central region, the median curve and the maximum non-outlying envelope.
UpSet plots can also be used to visualize attributes about the intersections by placing attribute visualizations next to the bar charts. [7] Common choices for these attribute visualizations are compact visualization approaches for distributions, such as box plots , or violin plots .
A non-exhaustive list of software implementations of Empirical Distribution function includes: In R software, we compute an empirical cumulative distribution function, with several methods for plotting, printing and computing with such an “ecdf” object. In MATLAB we can use Empirical cumulative distribution function (cdf) plot
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...