Search results
Results from the WOW.Com Content Network
Structure of RNase A. EC 3.1.27.5: RNase A is an RNase that is commonly used in research. RNase A (e.g., bovine pancreatic ribonuclease A: ) is one of the hardiest enzymes in common laboratory usage; one method of isolating it is to boil a crude cellular extract until all enzymes other than RNase A are denatured. It is specific for single ...
One major challenge of using RNA-based enzymes as a therapeutic is the short half-life of the catalytic RNA molecules in the body. To combat this, the 2’ position on the ribose is modified to improve RNA stability. One area of ribozyme gene therapy has been the inhibition of RNA-based viruses.
DNase enzymes can be inhaled using a nebulizer by cystic fibrosis sufferers. DNase enzymes help because white blood cells accumulate in the mucus, and, when they break down, they release DNA, which adds to the 'stickiness' of the mucus. DNase enzymes break down the DNA, and the mucus is much easier to clear from the lungs.
Depiction of the restriction enzyme (endonuclease) HindIII cleaving a double-stranded DNA molecule at a valid restriction site (5'–A|AGCTT–3').. In biochemistry, a nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids.
In molecular biology, endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain (namely DNA or RNA).Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (with regard to sequence), while many, typically called restriction endonucleases or restriction enzymes, cleave only at very specific nucleotide sequences.
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.
At neutral pH, nucleic acids are highly charged as each phosphate group carries a negative charge. [7] Both DNA and RNA are built from nucleoside phosphates, also known as mononucleotide monomers, which are thermodynamically less likely to combine than amino acids. Phosphodiester bonds, when hydrolyzed, release a considerable amount of free energy.
The rRNA is the component of the ribosome that hosts translation. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 28S and 5S rRNA. Three of the rRNA molecules are synthesized in the nucleolus, and one is synthesized elsewhere. In the cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein called a ribosome.