Search results
Results from the WOW.Com Content Network
If the array abstraction does not support true negative indices (as for example the arrays of Ada and Pascal do), then negative indices for the bounds of the slice for a given dimension are sometimes used to specify an offset from the end of the array in that dimension. In 1-based schemes, -1 generally would indicate the second-to-last item ...
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
However, always choosing the last element in the partition as the pivot in this way results in poor performance (O(n 2)) on already sorted arrays, or arrays of identical elements. Since sub-arrays of sorted / identical elements crop up a lot towards the end of a sorting procedure on a large set, versions of the quicksort algorithm that choose ...
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
Sorted arrays are the most space-efficient data structure with the best locality of reference for sequentially stored data. [citation needed]Elements within a sorted array are found using a binary search, in O(log n); thus sorted arrays are suited for cases when one needs to be able to look up elements quickly, e.g. as a set or multiset data structure.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
A sorting algorithm that checks if the array is sorted until a miracle occurs. It continually checks the array until it is sorted, never changing the order of the array. [10] Because the order is never altered, the algorithm has a hypothetical time complexity of O(∞), but it can still sort through events such as miracles or single-event upsets.