enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.

  3. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation.

  4. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation .

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    On the shoulders of giants: the great works of physics and astronomy. Philadelphia: Running Press. pp. 635– 732. ISBN 978-0-7624-1348-5. A derivation of Kepler's third law of planetary motion is a standard topic in engineering mechanics classes. See, for example: Meriam, J. L. (1971) [1966]. Dynamics (2nd ed.). New York: Wiley. pp. 161– 164.

  7. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The equation α + ⁠ η / r 3 ⁠ r = 0 is the fundamental differential equation for the two-body problem Bernoulli solved in 1734. Notice for this approach forces have to be determined first, then the equation of motion resolved. This differential equation has elliptic, or parabolic or hyperbolic solutions. [23] [24] [25]

  8. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force that varies in strength as the inverse square of the distance between them.

  9. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation . In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two ...