enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sobolev inequality - Wikipedia

    en.wikipedia.org/wiki/Sobolev_inequality

    The inequality expressing this fact has constants that do not involve the dimension of the space and, thus, the inequality holds in the setting of a Gaussian measure on an infinite-dimensional space. It is now known that logarithmic Sobolev inequalities hold for many different types of measures, not just Gaussian measures.

  3. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .

  4. Gagliardo–Nirenberg interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Gagliardo–Nirenberg...

    In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.

  6. Trudinger's theorem - Wikipedia

    en.wikipedia.org/wiki/Trudinger's_theorem

    In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a

  7. Interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Interpolation_inequality

    A simple example of an interpolation inequality — one in which all the u k are the same u, but the norms ‖·‖ k are different — is Ladyzhenskaya's inequality for functions :, which states that whenever u is a compactly supported function such that both u and its gradient ∇u are square integrable, it follows that the fourth power of u is integrable and [2]

  8. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.

  9. Friedrichs's inequality - Wikipedia

    en.wikipedia.org/wiki/Friedrichs's_inequality

    In mathematics, Friedrichs's inequality is a theorem of functional analysis, due to Kurt Friedrichs. It places a bound on the L p norm of a function using L p bounds on the weak derivatives of the function and the geometry of the domain , and can be used to show that certain norms on Sobolev spaces are equivalent.