enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iodine clock reaction - Wikipedia

    en.wikipedia.org/wiki/Iodine_clock_reaction

    The iodine clock reaction is a classical chemical clock demonstration experiment to display chemical kinetics in action; it was discovered by Hans Heinrich Landolt in 1886. [1] The iodine clock reaction exists in several variations, which each involve iodine species (iodide ion, free iodine, or iodate ion) and redox reagents in the presence of ...

  3. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics , which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.

  4. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  5. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    In chemical kinetics, an Arrhenius plot displays the logarithm of a reaction rate constant, (⁡ (), ordinate axis) plotted against reciprocal of the temperature (/, abscissa). [1] Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions.

  6. Stopped-flow - Wikipedia

    en.wikipedia.org/wiki/Stopped-flow

    Stopped-flow spectrometry enables the solution-phase study of chemical kinetics for fast reactions, typically with half-lives in the millisecond range. Initially, it was primarily used for investigating enzyme-catalyzed reactions but quickly became a staple in biochemistry, biophysics, and chemistry laboratories for tracking rapid chemical ...

  7. Blue bottle experiment - Wikipedia

    en.wikipedia.org/wiki/Blue_bottle_experiment

    The chemical reactions and mechanism in the blue bottle experiment rely on the oxidation of a sugar with the aid of air and a redox dye in a basic solution. Other variations of this reaction have been reported that use four families of redox dyes: thiazines , oxazines , azines , and indigo carmine have all been reported to work with glucose and ...

  8. Reaction dynamics - Wikipedia

    en.wikipedia.org/wiki/Reaction_dynamics

    Reaction dynamics is a field within physical chemistry, studying why chemical reactions occur, how to predict their behavior, and how to control them. It is closely related to chemical kinetics , but is concerned with individual chemical events on atomic length scales and over very brief time periods. [ 1 ]

  9. Reactions on surfaces - Wikipedia

    en.wikipedia.org/wiki/Reactions_on_surfaces

    The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be: Limiting step: adsorption/desorption