enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    The optical band gap (see below) determines what portion of the solar spectrum a photovoltaic cell absorbs. [18] Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell.

  3. Tauc plot - Wikipedia

    en.wikipedia.org/wiki/Tauc_plot

    Typically, a Tauc plot shows the photon energy E (= hν) on the abscissa (x-coordinate) and the quantity (αE) 1/2 on the ordinate (y-coordinate), where α is the absorption coefficient of the material. Thus, extrapolating this linear region to the abscissa yields the energy of the optical bandgap of the amorphous material.

  4. Urbach energy - Wikipedia

    en.wikipedia.org/wiki/Urbach_energy

    The Urbach Energy, or Urbach Edge, is a parameter typically denoted , with dimensions of energy, used to quantify energetic disorder in the band edges of a semiconductor. It is evaluated by fitting the absorption coefficient as a function of energy to an exponential function.

  5. Absorption edge - Wikipedia

    en.wikipedia.org/wiki/Absorption_edge

    In physics, an absorption edge (also known as an absorption discontinuity or absorption limit) is a sharp discontinuity in the absorption spectrum of a substance. These discontinuities occur at wavelengths where the energy of an absorbed photon corresponds to an electronic transition or ionization potential .

  6. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    The exact reverse of radiative recombination is light absorption. For the same reason as above, light with a photon energy close to the band gap can penetrate much farther before being absorbed in an indirect band gap material than a direct band gap one (at least insofar as the light absorption is due to exciting electrons across the band gap).

  7. Urbach tail - Wikipedia

    en.wikipedia.org/wiki/Urbach_tail

    Band-gap model (blue dotted line), the Urbach-tail extension (red dotted line), and the band-gap model with Urbach tail (black solid line). In the solid-state physics of semiconductors , the Urbach tail is an exponential part in the energy spectrum of the absorption coefficient .

  8. Elliott formula - Wikipedia

    en.wikipedia.org/wiki/Elliott_formula

    The Elliott formula describes analytically, or with few adjustable parameters such as the dephasing constant, the light absorption or emission spectra of solids. It was originally derived by Roger James Elliott to describe linear absorption based on properties of a single electron–hole pair. [ 1 ]

  9. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.