Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
As another example of using generating functions to relate sequences and manipulate sums, for an arbitrary sequence f n we define the two sequences of sums := = ~:= = (+) (+) (+), for all n ≥ 0, and seek to express the second sums in terms of the first. We suggest an approach by generating functions.
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
The number of ways of writing n as an ordered sum in which no term is 2 is P(2n − 2). For example, P(6) = 4, and there are 4 ways to write 4 as an ordered sum in which no term is 2: 4 ; 1 + 3 ; 3 + 1 ; 1 + 1 + 1 + 1. The number of ways of writing n as a palindromic ordered sum in which no term is 2 is P(n).