Search results
Results from the WOW.Com Content Network
Euclid's Proposition 28 extends this result in two ways. First, if a transversal intersects two lines so that corresponding angles are congruent, then the lines are parallel. Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel.
Tangential – intersecting a curve at a point and parallel to the curve at that point. Collinear – in the same line; Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection).
Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...
If the lines AB' and A'B are parallel and the lines BC' and B'C are parallel, then the lines CA' and C'A are parallel. (This is the affine version of Pappus's hexagon theorem). The full axiom system proposed has point, line, and line containing point as primitive notions: Two points are contained in just one line.
Transversal plane theorem for planes: Planes intersected by a transversal plane are parallel if and only if their alternate interior dihedral angles are congruent. Transversal line containment theorem: If a transversal line is contained in any plane other than the plane containing all the lines, then the plane is a transversal plane.
It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point. Distinguishing these cases, and determining equations for the point and line in the latter cases, have use in computer graphics , motion planning ...
A parallel of a curve is the envelope of a family of congruent circles centered on the curve. It generalises the concept of parallel (straight) lines. It can also be defined as a curve whose points are at a constant normal distance from a given curve. [1]
Parallel lines are mapped on parallel lines, or on a pair of points (if they are parallel to ). The ratio of the length of two line segments on a line stays unchanged. As a special case, midpoints are mapped on midpoints. The length of a line segment parallel to the projection plane remains unchanged. The length of any line segment is shortened ...