Search results
Results from the WOW.Com Content Network
it uses a stack instead of a queue, and; it delays checking whether a vertex has been discovered until the vertex is popped from the stack rather than making this check before adding the vertex. If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs ...
The first and next procedures are used by the backtracking algorithm to enumerate the children of a node c of the tree, that is, the candidates that differ from c by a single extension step. The call first(P,c) should yield the first child of c, in some order; and the call next(P,s) should return the next sibling of node s, in that order. Both ...
Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1] Algorithm X is a recursive , nondeterministic , depth-first , backtracking algorithm that finds all solutions to the exact cover problem.
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.
The algorithm is called lexicographic breadth-first search because the order it produces is an ordering that could also have been produced by a breadth-first search, and because if the ordering is used to index the rows and columns of an adjacency matrix of a graph then the algorithm sorts the rows and columns into lexicographical order.