Search results
Results from the WOW.Com Content Network
Types of manifolds in engineering include: Exhaust manifold An engine part that collects the exhaust gases from multiple cylinders into one pipe. Also known as headers. Hydraulic manifold A component used to regulate fluid flow in a hydraulic system, thus controlling the transfer of power between actuators and pumps Inlet manifold (or "intake ...
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation. Manifolds can usually be ...
A manifold is composed of assorted hydraulic valves connected to each other. It is the various combinations of states of these valves that allow complex control behaviour in a manifold. [1] [citation needed] A hydraulic manifold is a block of metal with flow paths drilled through it, connecting various ports. [2]
Kirby, Robion C. and Siebenmann, Laurence C. (1977) Foundational Essays on Topological Manifolds. Smoothings, and Triangulations. Princeton University Press. ISBN 0-691-08190-5. A detailed study of the category of topological manifolds. Lee, John M. (2000) Introduction to Topological Manifolds. Springer-Verlag. ISBN 0-387-98759-2. Detailed and ...
The boundary of a manifold is a manifold , which has dimension . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} . We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .
The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...
In any case, non-paracompact manifolds are generally regarded as pathological. An example of a non-paracompact manifold is given by the long line. Paracompact manifolds have all the topological properties of metric spaces. In particular, they are perfectly normal Hausdorff spaces. Manifolds are also commonly required to be second-countable.