enow.com Web Search

  1. Ad

    related to: sequence of squares in squares formula definition geometry calculator algebra

Search results

  1. Results from the WOW.Com Content Network
  2. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    Formulas for summing consecutive squares to give a cubic polynomial, whose values are the square pyramidal numbers, are given by Archimedes, who used this sum as a lemma as part of a study of the volume of a cone, [2] and by Fibonacci, as part of a more general solution to the problem of finding formulas for sums of progressions of squares. [3]

  3. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    Diagram illustrating three basic geometric sequences of the pattern 1(r n−1) up to 6 iterations deep.The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively.

  4. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  6. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    Both the Fibonacci sequence and the sequence of Lucas numbers can be used to generate approximate forms of the golden spiral (which is a special form of a logarithmic spiral) using quarter-circles with radii from these sequences, differing only slightly from the true golden logarithmic spiral.

  7. Pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_number

    Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]

  8. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    Additionally, multiplying a congruum by a square number produces another congruum, whose progression of squares is multiplied by the same factor. All solutions arise in one of these two ways. [ 1 ] For instance, the congruum 96 can be constructed by these formulas with m = 3 {\displaystyle m=3} and n = 1 {\displaystyle n=1} , while the congruum ...

  9. Sylvester's sequence - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_sequence

    The sequence can be used to prove that there are infinitely many prime numbers, as any prime can divide at most one number in the sequence. More strongly, no prime factor of a number in the sequence can be congruent to 5 modulo 6, and the sequence can be used to prove that there are infinitely many primes congruent to 7 modulo 12. [20]

  1. Ad

    related to: sequence of squares in squares formula definition geometry calculator algebra