enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two tosses ("HH").

  4. Conditional mutual information - Wikipedia

    en.wikipedia.org/wiki/Conditional_mutual_information

    In probability theory, particularly information theory, the conditional mutual information [1] [2] is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third.

  5. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  6. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    [2] [3] Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the ...

  7. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent. [4] [5] [6] In the case of comparing two models each of which has no unknown parameters, use of the likelihood-ratio test can be justified by the Neyman–Pearson lemma.

  8. Marginal likelihood - Wikipedia

    en.wikipedia.org/wiki/Marginal_likelihood

    A marginal likelihood is a likelihood function that has been integrated over the parameter space.In Bayesian statistics, it represents the probability of generating the observed sample for all possible values of the parameters; it can be understood as the probability of the model itself and is therefore often referred to as model evidence or simply evidence.

  9. Law of total covariance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_covariance

    Some writers on probability call this the "conditional covariance formula" [2] or use other names. Note: The conditional expected values E( X | Z) and E( Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z.