enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Galois geometry - Wikipedia

    en.wikipedia.org/wiki/Galois_geometry

    The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]

  3. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    The projective plane over K, denoted PG(2, K) or KP 2, has a set of points consisting of all the 1-dimensional subspaces in K 3. A subset L of the points of PG(2, K ) is a line in PG(2, K ) if there exists a 2-dimensional subspace of K 3 whose set of 1-dimensional subspaces is exactly L .

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The Fano plane is the projective plane with the fewest points and lines. The smallest 2-dimensional projective geometry (that with the fewest points) is the Fano plane, which has 3 points on every line, with 7 points and 7 lines in all, having the following collinearities:

  5. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Castelnuovo's theorem implies that to construct a minimal model for a smooth surface, we simply contract all the −1-curves on the surface, and the resulting variety Y is either a (unique) minimal model with K nef, or a ruled surface (which is the same as a 2-dimensional Fano fiber space, and is either a projective plane or a ruled surface ...

  6. Cayley plane - Wikipedia

    en.wikipedia.org/wiki/Cayley_plane

    In the Cayley plane, lines and points may be defined in a natural way so that it becomes a 2-dimensional projective space, that is, a projective plane. It is a non-Desarguesian plane, where Desargues' theorem does not hold. More precisely, as of 2005, there are two objects called Cayley planes, namely the real and the complex Cayley plane.

  7. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    A two-dimensional complex space – such as the two-dimensional complex coordinate space, the complex projective plane, or a complex surface – has two complex dimensions, which can alternately be represented using four real dimensions. A two-dimensional lattice is an infinite grid of points which can be represented using integer coordinates.

  8. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.

  9. Cremona group - Wikipedia

    en.wikipedia.org/wiki/Cremona_group

    The projective general linear group of order +, of projective transformations, is contained in the Cremona group of order . The two are equal only when n = 0 {\displaystyle n=0} or n = 1 {\displaystyle n=1} , in which case both the numerator and the denominator of a transformation must be linear.