Search results
Results from the WOW.Com Content Network
Although cellular respiration is technically a combustion reaction, it is an unusual one because of the slow, controlled release of energy from the series of reactions. Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent is molecular oxygen (O 2).
Cellular concentrations of free or non-covalently bound flavins in a variety of cultured mammalian cell lines were reported for FAD (2.2-17.0 amol/cell) and FMN (0.46-3.4 amol/cell). [18] FAD has a more positive reduction potential than NAD+ and is a very strong oxidizing agent.
This specificity reflects the distinct metabolic roles of the respective coenzymes, and is the result of distinct sets of amino acid residues in the two types of coenzyme-binding pocket. For instance, in the active site of NADP-dependent enzymes, an ionic bond is formed between a basic amino acid side-chain and the acidic phosphate group of NADP +.
Catabolism breaks down large molecules (such as polysaccharides, lipids, nucleic acids, and proteins) into smaller units (such as monosaccharides, fatty acids, nucleotides, and amino acids, respectively). Catabolism is the breaking-down aspect of metabolism, whereas anabolism is the building-up aspect.
A peptide bond forms between the amino acid attached to the tRNA in the P site and the amino acid attached to a tRNA in the A site. The formation of a peptide bond requires an input of energy. The two reacting molecules are the alpha amino group of one amino acid and the alpha carboxyl group of the other amino acids.
3), and carbon dioxide (CO 2) in order to maintain pH in the blood and duodenum, among other tissues, to support proper metabolic function. [1] Catalyzed by carbonic anhydrase , carbon dioxide (CO 2 ) reacts with water (H 2 O) to form carbonic acid (H 2 CO 3 ), which in turn rapidly dissociates to form a bicarbonate ion (HCO −
It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation. Pyruvic acid supplies energy to cells through the citric acid cycle (also known as the Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking. [4]
Glycolysis, which means “sugar splitting,” is the initial process in the cellular respiration pathway. Glycolysis can be either an aerobic or anaerobic process. When oxygen is present, glycolysis continues along the aerobic respiration pathway. If oxygen is not present, then ATP production is restricted to anaerobic respiration.