enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    The data for multiple products is codified and input into a statistical program such as R, SPSS or SAS. (This step is the same as in Factor analysis). Estimate the Discriminant Function Coefficients and determine the statistical significance and validity—Choose the appropriate discriminant analysis method.

  3. Score test - Wikipedia

    en.wikipedia.org/wiki/Score_test

    If the null hypothesis is true, the likelihood ratio test, the Wald test, and the Score test are asymptotically equivalent tests of hypotheses. [8] [9] When testing nested models, the statistics for each test then converge to a Chi-squared distribution with degrees of freedom equal to the difference in degrees of freedom in the two models.

  4. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a simple univariate regression may propose (,) = +, suggesting that the researcher believes = + + to be a reasonable approximation for the statistical process generating the data. Once researchers determine their preferred statistical model , different forms of regression analysis provide tools to estimate the parameters β ...

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    In frequentist statistics, the likelihood function is itself a statistic that summarizes a single sample from a population, whose calculated value depends on a choice of several parameters θ 1... θ p , where p is the count of parameters in some already-selected statistical model .

  8. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    It says what fraction of the variance of the data is explained by the fitted trend line. It does not relate to the statistical significance of the trend line (see graph); the statistical significance of the trend is determined by its t-statistic. Often, filtering a series increases r 2 while making little difference to the fitted trend.

  9. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    The approach is called linear least squares since the assumed function is linear in the parameters to be estimated. Linear least squares problems are convex and have a closed-form solution that is unique, provided that the number of data points used for fitting equals or exceeds the number of unknown parameters, except in special degenerate ...