Search results
Results from the WOW.Com Content Network
An ion drift meter is a device used to measure the velocity of individual ions in the area of a spacecraft.This information can then be used to calculate the ion drift in the space surrounding the instrument as well as the strength of an electric field present, provided that the magnetic field strength has been determined using a magnetometer.
where t D is the ion drift time, Δt D is the Full width at half maximum, L is the tube length, E is the electric field strength, Q is the ion charge, k is the Boltzmann constant, and T is the drift gas temperature. Ambient pressure methods allow for higher resolving power and greater separation selectivity due to a higher rate of ion-molecule ...
The domestic smoke detector is a good example of this, where a natural flow of air through the chamber is necessary so that smoke particles can be detected by the change in ion current. Other examples are applications where the ions are created outside the chamber but are carried in by a forced flow of air or gas.
High-field asymmetric-waveform ion mobility spectrometry (FAIMS or RF-DC ion mobility spectrometry) is an ion mobility spectrometry technique in which ions at atmospheric pressure are separated by the application of a high-voltage asymmetric waveform at radio frequency (RF) combined with a static waveform applied between two electrodes.
The velocity of the charged particle after acceleration will not change since it moves in a field-free time-of-flight tube. The velocity of the particle can be determined in a time-of-flight tube since the length of the path (d) of the flight of the ion is known and the time of the flight of the ion (t) can be measured using a transient digitizer or time to digital converter.
For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1] This means that a sodium ion in an electric field of 1 V/m would have an average drift velocity of 5.19 × 10 −8 m/s. Such values can be obtained from measurements of ionic conductivity in solution.
The rotationally averaged collision cross section (CCS) which is a physical property of ions reflecting the shape of the ions can be measured accurately on drift tube ion mobility. [11] The resolving power is high (CCS resolution can be higher than 100). Drift tube ion mobility is widely used for structure analysis.
The ion current is generated by the creation of "ion pairs", consisting of an ion and an electron. The ions drift to the cathode while free electrons drift to the anode under the influence of the electric field. This current is independent of the applied voltage if the device is being operated in the "ion chamber region".