enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics may be expressed in many specific ways, [23] the most prominent classical statements [24] being the statement by Rudolf Clausius (1854), the statement by Lord Kelvin (1851), and the statement in axiomatic thermodynamics by Constantin Carathéodory (1909). These statements cast the law in general physical terms ...

  3. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius statement states that it is impossible to construct a device whose sole effect is the transfer of heat from a cool reservoir to a hot reservoir. [3] Equivalently, heat spontaneously flows from a hot body to a cooler one, not the other way around.

  4. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin). The foundations of statistical thermodynamics were set out by physicists such as James Clerk Maxwell, Ludwig Boltzmann, Max Planck, Rudolf Clausius and J. Willard Gibbs.

  5. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  6. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.

  7. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The energy is replaced by the characteristic potential of that ensemble, the Gibbs Free Energy. The letter Z stands for the German word Zustandssumme , "sum over states". The usefulness of the partition function stems from the fact that the macroscopic thermodynamic quantities of a system can be related to its microscopic details through the ...

  8. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    The Planck statement applies only to perfect crystalline substances: As temperature falls to zero, the entropy of any pure crystalline substance tends to a universal constant. That is, lim T → 0 S = S 0 {\displaystyle \lim _{T\to 0}S=S_{0}} , where S 0 {\displaystyle S_{0}} is a universal constant that applies for all possible crystals, of ...

  9. Free entropy - Wikipedia

    en.wikipedia.org/wiki/Free_entropy

    A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function.